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Abstract 

In recent years, NaTech disasters, which are defined as the technological 

accidents caused by natural events, have led to huge losses all over the world. To reduce 

these losses, assessments of the vulnerabilities of industrial facilities are necessary. In 

this study, an effort was made to locate aboveground storage tanks from remotely 

sensed imagery. A dataset that identifies different types of tanks was generated. The 

data were acquired from the National Agriculture Imagery Program (NAIP) and tanks 

were labeled as closed roof tank, external floating roof tank, spherical tank, water 

treatment tank, or water tower according to their shapes. After collecting these data, the 

Faster R-CNN algorithm, an object detection architecture, was applied to test the 

performance of this algorithm on the prelabeled dataset. Results of testing indicate that 

the algorithm could well achieve the goal that having a high recall rate for all the classes 

of tanks. The precision and recall rates were 82.92% and 90.03% for closed roof tanks, 

85.85% and 91.68% for external floating roof tanks, 34.81% and 60.26% for spherical 

tanks, 49.63% and 89.33% water treatment tanks, 9.43% and 38.46% for water towers. For 

spherical tanks and water towers, although having low precision and recall, the 

percentage of missed tanks was extremely low, which is 2.08% and 0 respectively. These 

results suggest that this aboveground storage tank dataset and the pretrained model 

generated from Faster R-CNN could be further used in future work for tank detection 

and vulnerability assessment.  
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1. Introduction  

1.1 Motivation for Study 

“Natural” and “Technological” hazards are traditionally treated as independent 

phenomena. However, so-called “NaTech” disasters have revealed strong interactions 

between the two hazards in recent years. NaTech events refer to the failures of critical or 

civil infrastructure and industrial facilities caused by natural hazards and leading to the 

release of hazardous material into the environment (Gheorghiua et al., 2014). For 

instance, hurricanes may destroy onshore or offshore aboveground storage tanks 

(ASTs). The petroleum products or other chemical products in the ASTs may be released 

into the air, land, and water and be shifted to surrounding ecosystems and communities. 

Changing environmental conditions have the potential to increase the risk of tank 

accidents, so it is becoming more critical to mitigate ecosystems and communities' 

vulnerabilities in extreme weather conditions and assess the fragility of civil 

infrastructure and industrial facilities (Krausmann et al., 2011) . Locating those 

aboveground storage tanks is the first step of the assessment.  

In recent years, AST detection is especially challenging and has attracted 

increased attention. ASTs play an important role in energy systems and industry. They 

are large containers generally made of metal and concrete pads and designed to store a 

great variety of liquid or gas substances, such as water and petrochemical products. 

ASTs can be difficult to identify from remote sensing. According to the products they 

store, ASTs come in different sizes and have different shapes of tops, which makes them 

challenging to detect. At the same time, ASTs suffer from high risk of vulnerability due 
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to natural hazards and extreme weather. For example, because of Hurricane Katrina, 

over 200 releases of contaminants were reported, including hazardous chemicals, oil, 

and natural gas (Santella et al., 2010).  

1.2 Remote Detection 

As remote sensing technology has been successfully developed in recent 

decades, more high-resolution remotely sensed imagery is now available. These datasets 

facilitate many applications, such as infrastructure surveying, ecosystem recovery from 

land use, and natural hazard prediction. In these applications, object detection is one of 

the most important steps. Object detection, including feature extraction and learning 

methods, is most often applied, and has attracted much research (Leitloff et al., 2010; Shi 

et al., 2013; Chen et al., 2013; Huang et al., 2007; Huang et al., 2012; Huang., et al 2014). 

1.3 Related work 

Various methods have been proposed to identify ASTs. In previous literature, 

unsupervised methods, such as the hierarchical model, Hough transform, and the 

shape-guide saliency models were applied to detect circular-shaped tanks (Chen et al., 

2006; Li et al., 2008; Yi-li et al., 2011; Han & Fu 2012; Zhu et al., 2012; Kushwaha et al., 

2013; Cai et al., 2014; Xu et al., 2014; Yao et al., 2014; Ok 2013; Ok & Başeski 2015; Jing et 

al., 2018). However, these methods have the limitation that they detect tanks according 

to certain shapes and colors. As industry has developed, new demands have been 

raised, requiring tanks in various shapes and colors. Therefore, traditional shape- and-

color-based models are not able to achieve multi-type tank detection.  
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Supervised learning of convolutional neural network (CNN)-based algorithms 

has been implemented for a variety of object detection and classification tasks. The 

classification task is classifying the class a given image belongs to, while object detection 

helps to identify the location of an object in an image. In 2012, Krizhevsky et al. (2012) 

attracted scholars’ attention on CNNs by showing high accuracy of image classification. 

Girshick et al. (2014) bridged the gap between image classification and object detection 

by showing that a CNN can lead high object detection performance. The CNN-based 

algorithm Girshick et al. used was called R-CNNs, which yielded high object detection 

performance. Then R-CNN models have since been improved by increasing speed and 

accuracy, called Fast R-CNN and Faster R-CNN (Girshick 2015; Ren et al., 2015). 

Recently, scholars have tried Faster R-CNN in tank detection. In 2020, Zalpour et al. 

(2020) employed Faster R-CNN to extract regions of interest and then applied a support 

vector machine to classify storage tanks from the background of an image.  

Faster R-CNN performs well for extraction and object detection in regions of 

interest but is supervised learning, which means that it requires labeled data as input. 

Only a couple of open access datasets contain bounding box or pixel level annotations. 

NWPU-VHR-10 is a prelabeled dataset and contains “storage-tank” as one of the labels 

(Cheng et al., 2014; Cheng & Han 2016; Cheng et al., 2016). However, due to the lack of 

metadata, NWPU-VHR-10 was not applied in this study. The Oil and Gas Tank dataset 

is another prelabeled dataset, but the angle of projection is different from other datasets, 

which leads it to have bad performance when testing images from other datasets (Rabbi 
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2020). Therefore, in this study, we created a prelabeled and open access dataset that 

includes various types of tanks for research use. 

1.4 Purpose of the thesis 

AST detection is a difficult challenge, not only because of the complex 

background, which contains a great variety of objects, such as buildings and trees, but 

also due to the differences between imagery datasets. Imagery datasets are collected in 

different methods, such as by satellite imagery or by aircraft with digital cameras. 

Therefore, the same tank can have different shapes and colors when presented in 

different datasets due to the change of resolution. This implies that tools trained to 

previous datasets do not perform well on more recent datasets.  

In addition to the difficulties of data sources, different types of tanks also cause 

difficulty. ASTs store various liquids and gases. To satisfy different storage 

requirements, more types of tanks have been designed. As a result, multi-type tank 

detection is of more significance. Although, in previous literature, scholars have 

attempted to detect tanks from high-resolution imagery (Zhang et al., 2015; Wang et al., 

2016; Özyurt 2019), no research exists on different types of tank detection. Therefore, the 

first objective of this thesis is to generate a prelabeled dataset using the National 

Agriculture Imagery Program (NAIP) data, which was acquired between 2018 and 2019. 

Also, this study makes multi-type tank detection feasible by labeling tanks according to 

their features. The dataset, which may help in artificial intelligence development, will be 

shared and published online.  
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To present the performance of supervised learning algorithms on our prelabeled 

dataset, the Faster R-CNN algorithm was used for training and testing. Initial training 

results in a pretrained model with pretrained weights for Faster R-CNN that can be used 

to test again other images. As deep learning models can take a long time to train, other 

researchers could benefit by applying our pretrained model to their dataset. For this 

reason, the second objective of this thesis is to test the performance of the Faster R-CNN 

on our prelabeled dataset and generate a pretrained model for further use. 

2. Data 

2.1 Aboveground Storage Tanks 

Huge quantities of fuel, water, chemicals, and petroleum products are required 

for industrial entities and manufacturers, the petrochemical industry in particular. 

Tanks are therefore designed to fulfill storage needs of the industry. ASTs are usually 

large containers. They are made of stainless steel, fiberglass, or polyethylene, depending 

upon the substances being stored.  

Different types of industrial ASTs that referenced from GSC Tanks include:  

1) Fixed-roof tanks 

Fixed-roof tanks are primarily used to store water. They have a cone or dome 

roof, which is permanently attached to the cylindrical shell.  

2) Internal floating roof tanks 

Internal floating roof tanks are covered by an external cone or dome roof and 

also equipped with an internal floating roof. The internal roof rises and falls with the 
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fluid level, reducing evaporative loss. The external roof protects the fluid inside from 

extreme weather like heavy rain and strong winds. 

3) External floating roof tanks 

External floating roof tanks consist of a cylindrical steel shell that is open but 

contains a floating roof on the surface of the fluid.  

4) Variable vapor space tanks 

Variable vapor space tanks are typically spherical-shaped in order to store gas at 

high pressures.  

5) Water treatment sedimentation basins 

A sedimentation basin is a circular basin, designed to remove settleable solids by 

gravity from wastewater. There are typically visible sludge scrapers that collect the 

sludge into a central hopper, which makes them distinguishable in satellite imagery.  

6) Water towers 

A water tower has a water tank supported by an elevated structure. It is 

distinguishable from storage tanks because of a large head and a thin pillar beneath the 

head.  

In this study, because it is impossible to tell the difference between fixed-roof 

tanks and internal floating roof tanks from remotely sensed data, we labeled them 

together as closed_roof_tanks. There are therefore a total of five labels to represent the 

above types of tanks. The labels are: closed_roof_tank for fixed-roof tanks and internal 

floating roof tanks; external_floating_roof_tank for external floating roof tanks; 

spherical_tank for variable vapor space tanks; water_treatment_tank for sedimentation 
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basins; and water_tower for water towers.  In Appendix A, there are image samples of 

different types of tanks.  

 

Figure 1: Types of tanks 

Table 1: Labels of different types of tanks 

Types of tanks Labels 

Fixed-roof tanks closed_roof_tank 

Internal floating roof tanks closed_roof_tank 

External floating roof tanks external_floating_roof_tank 

Variable vapor space tanks spherical_tank 

Sedimentation basins water_treatment_tank 

Water towers water_tower 
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2.2 Data Sources 

This study was conducted using aerial images of large natural gas plants, 

petroleum refineries, petroleum terminals, and crude oil storage fields. To collect the 

aerial images of these sites, the location information of these sites including longitude 

and latitude is needed. The four sources of the location information are: (1) the 

Homeland Infrastructure Foundation-Level Data (HIFLD) by the Department of 

Homeland Security (U.D. of Homeland Security), (2) the U.S Energy Mapping System 

from the Energy Information Administration (EIA) (U.E.I. Administration), (3) the 

Greenhouse Gas Reporting Program (GHGRP) by the Environmental Protection Agency 

(EPA), and (4) large crude oil storage fields across the United States. The information on 

tank types is not given by these sources. Human review on the labeled data was the way 

to check whether tanks were labeled as the right types.  

The aerial images were acquired from the National Agriculture Imagery Program 

(NAIP). NAIP (U.-F.A.A.P.F.Office), which is administered by the USDA’s Farm Service 

Agency (FSA), collects aerial imagery of the continental U.S. during the agricultural 

growing seasons. The datasets are available for governmental agencies and the public. 

NAIP began in 2003 with a five-year cycle. In 2009, NAIP transferred to a three-year 

cycle. From 2008, NAIP applied digital sensors instead of film cameras to capture 

images. Also, the imagery was delivered with four bands of data--RGB (red, green, blue) 

and near infrared color--in contrast to three bands (RGB) before 2007. In 2019, the spatial 

resolution of the imagery is 0.6 meter, which means 1 pixel in an image covers 0.36 m2 of 

the Earth’s surface.  
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Figure 2: Image sample 

2.3 Characteristics of Data 

There are a total of 8238 positive images (contain tanks) in our dataset. 5% of 

these images were divided into a test set (400). We also randomly picked 400 negative 

images (not containing tanks) for this test set. In the other 95% of positive images, 80% 

were in training set and 20% were in validation set.  
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Figure 3: Summary of the dataset 

In the whole dataset, there are 45918 tanks including 33204 closed roof tanks, 

9618 external floating roof tanks, 1278 spherical tanks, 1662 water treatment tanks, and 

156 water towers. In the training and validation sets, there are 43589 tanks containing 

31551 closed roof tanks, 9067 external floating roof tanks, 1230 spherical tanks, 1590 

water treatment tanks, and 151 water towers.  

In the test set, there are 800 images (400 negative and 400 positive), including 

2329 tanks. 1653 of them are closed roof tanks, 551 external floating roof tanks, 48 

spherical tank, 72 water treatment facility, and 5 water towers.   
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3. Methods 

3.1 Data Preprocessing 

In the NAIP dataset, every image tile has a quadrangle name. For instance, 

“m_4207140_se_19_060_20181016” indicates that the file is in USGS quadrangle 42071, in 

the SE quarter-quad, in UTM zone 19, and was acquired on 10/16/2018. Because of the 

images’ large size (about 10000*12000 pixels), these tiles are too large for training and 

testing. Therefore, in this study, they are clipped into images, with a 512*512-pixel size. 

The process is shown in Figure 4.  

 

Figure 4: Illustration of data clipping 

The white area is the tile, which is divided a grid of 512*512 pixels. If the length 

or width of a tile is indivisible by 512, then the length or width of the tile is enlarged to a 
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512-divisible number by filling with black as the black edges shown in Figure 4, which is 

why some chips have black areas. Such black areas do not influence training results in 

object detection because only the data of the object area in a chip matter.  

3.2 Annotation 

LabelImg (https://github.com/tzutalin/labelImg) is an annotation tool that is 

written in Python. In this study, it was applied to annotate different types of tanks in the 

images.  

In LabelImg, every tank was labeled as closed_roof_tank, 

external_floating_roof_tank, spherical_tank, water_treatment_tank, or water_tower. 

Every tank is labeled even though only part of a tank may appear in the chip. Shadows 

of tanks were not included because the time that the tiles in NAIP were acquired 

influences the shape and size of the shadows of tanks. After annotation, the annotation 

files were stored as Extensible Markup Language (XML) files that all have an extension 

name of “.xml”. The training set, validation set, and test set were stored and used in 

PASCAL VOC2007 format.  

3.3 Faster R-CNN Implementation 

In 2015, Ren et al. proposed Faster R-CNN, an excellent object detection 

algorithm (Ren et al., 2015). Compared to Fast R-CNN, Faster R-CNN improved 

efficiency and accuracy by reducing false positives. Faster R-CNN has the advantages of 

lower computational burden and no restrictions on the input images’ sizes. As shown in 

Figure 4, after reshaping the input image, the feature maps extracted from a CNN model 

were passed into two stages: the region proposal network (RPN) and the Fast R-CNN 
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detector. RPN uses an image to generate a set of object proposals as output. The object 

proposals are classified by the Fast R-CNN detector. In other words, RPN extracts 

regions for Fast R-CNN to identify. Both RPN and Fast R-CNN are explained in Figure 

5.  

 

Figure 5: Structure of Faster R-CNN 

RPN generates region proposals by a CNN model. In this study, VGG-16 

(Simonyan & Zisserman 2014), which has 13 shareable convolutional layers (13 

convolutional layers, 13 Relu layers, and 4 pooling layers), is applied to extract feature 

maps. In the RPN, to generate a set of rectangular region proposals (also called anchors, 

9 anchors are generated in this study), a spatial window of 3*3 convolution kernel is 

applied. Features of each anchor are passed into two fully-connected layers: a regression 

layer and a classification layer. The regression layer predicts the location of these 

anchors; while the classification layer gives the probability that these anchors belong to 
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foreground or background. The outputs of the regression layer and classification layer 

serve as the region proposals which are passed to the Fast R-CNN network.  

After receiving region proposals from RPN, the Fast R-CNN network sends these 

proposals into a pooling layer. This information then is converted to a vector which is 

sent to two fully connected layers: regression and classification layers. These two layers 

calculate the probability of the class and location for each proposal.  

The loss function of Faster R-CNN model is given as follows:  

𝐿(𝑡𝑜𝑡) = 𝐿(𝑟𝑝𝑛_𝑙𝑜𝑠𝑠_𝑐𝑙𝑠) + 𝐿(𝑟𝑝𝑛_𝑙𝑜𝑠𝑠_𝑏𝑜𝑥) + 𝐿(𝑓𝑟𝑐_𝑙𝑜𝑠𝑠_𝑐𝑙𝑠) + 𝐿(𝑓𝑟𝑐_𝑙𝑜𝑠𝑠_𝑏𝑜𝑥)    (1) 

where 𝐿(𝑡𝑜𝑡) is total loss. 𝐿(𝑟𝑝𝑛_𝑙𝑜𝑠𝑠_𝑐𝑙𝑠) and 𝐿(𝑟𝑝𝑛_𝑙𝑜𝑠𝑠_𝑏𝑜𝑥) are classification and 

regression loss in the RPN, and 𝐿(𝑓𝑟𝑐_𝑙𝑜𝑠𝑠_𝑐𝑙𝑠) and 𝐿(𝑓𝑟𝑐_𝑙𝑜𝑠𝑠_𝑏𝑜𝑥) are classification and 

regression loss in the Fast R-CNN model.  

The detailed classification and regression loss function in RPN and Fast R-CNN 

is given as follows (Ren et al., 2015):  

𝐿({𝑝𝑖}, {𝑡𝑖}) =
1

𝑁𝑐𝑙𝑠
∑ 𝐿𝑐𝑙𝑠(𝑝𝑖 , 𝑝𝑖

∗)𝑖 + 𝜆
1

𝑁𝑟𝑒𝑔
∑ 𝑝𝑖

∗𝐿𝑟𝑒𝑔(𝑡𝑖 , 𝑡𝑖
∗)𝑖              (2) 

Here, 𝑖 is the index of anchor in a mini-batch. 𝑁𝑐𝑙𝑠  is the mini-batch size and 𝑁𝑟𝑒𝑔 

is the number of anchor locations. 𝜆 is used to balance the classification part and 

regression part to be equally weighted. For instance, in this study, 𝑁𝑐𝑙𝑠  is 128, 𝑁𝑟𝑒𝑔 is 

1024, then 𝜆 is set as 8 to balance 𝑁𝑐𝑙𝑠  and 𝑁𝑟𝑒𝑔. 𝑁𝑐𝑙𝑠 , the mini-batch size, is one of the 

hyperparameters that are set before training. 𝑁𝑟𝑒𝑔 is 1024 because a 512*512-pixel image 

will be reduced by 256 times (16 times on width and 16 times on height) to a 32*32*512 

feature map, the number of anchor locations is 32*32 (1024).  



 

15 

In classification part, 𝑝𝑖 is the predicted probability that anchor 𝑖 is a tank. 𝑝𝑖
∗ is 1 

or 0. For anchor 𝑖, if it has the highest Intersection-over-Union (IoU) with a manually 

labeled bounding box or if it has an IoU higher than 0.7 with any manually labeled 

bounding box, then 𝑝𝑖
∗ of this anchor is 1. If anchor 𝑖 is not in any conditions mentioned 

in prior sentence and has IoU lower than 0.3 for all manually labeled bounding box, then 

𝑝𝑖
∗ of this anchor is 0. If anchor 𝑖 has no attributes as mentioned above, it will not be 

included in training process.  𝐿𝑐𝑙𝑠  is log loss over object and not object, whose equation is 

shown in Eq. (3).  

𝐿𝑐𝑙𝑠(𝑝𝑖 , 𝑝𝑖
∗) =  −log (𝑝𝑖𝑝𝑖

∗ + (1 − 𝑝𝑖)(1 − 𝑝𝑖
∗))                              (3) 

In regression part, 𝑡𝑖  and 𝑡𝑖
∗ are two vectors containing the 4 parameterized 

coordinates for predicted bounding box and the manually labeled bounding box 

associated with anchor 𝑖 respectively. The parameterization process is shown as follows:  

{
  
 

  
 𝑡𝑥 =

𝑥−𝑥𝑎

𝑤𝑎
, 𝑡𝑦 =

𝑦−𝑦𝑎

ℎ𝑎
,

𝑡𝑤 = log (
𝑤

𝑤𝑎
) , 𝑡ℎ = log (

ℎ

ℎ𝑎
) , 

𝑡𝑥
∗ =

𝑥∗−𝑥𝑎

𝑤𝑎
, 𝑡𝑦
∗ =

𝑦∗−𝑦𝑎

ℎ𝑎
,

𝑡𝑤
∗ = log (

𝑤∗

𝑤𝑎
) , 𝑡ℎ

∗ = log (
ℎ∗

ℎ𝑎
) ,

                                          (4) 

where 𝑥 and 𝑦 represent the box’s center coordinates. 𝑤 and ℎ are its width, and 

height. 𝑥, 𝑥𝑎, 𝑥∗ are for predicted bounding box, anchor box, and manually labeled 

bounding box respectively (likewise for 𝑦, 𝑤, and ℎ).  

𝐿𝑟𝑒𝑔(𝑡𝑖 , 𝑡𝑖
∗) = 𝑅(𝑡𝑖 − 𝑡𝑖

∗) where R is Smooth L1 function, whose equation is shown 

in Eq. (5). 

𝑆𝑚𝑜𝑜𝑡ℎ𝐿1(𝑥) = {
0.5 ∗ 𝑥2, |𝑥| < 1 

|𝑥| − 0.5, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                 (5) 
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3.4 Important Training Hyperparameters 

Hyperparameters are parameters control the learning process in machine 

learning. Hyperparameters do not have influence on the training set, but have impact on 

the speed and quality of models.  

1) Weight Decay 

Weight decay is the parameter that controls the impact of regularization on the 

model. Regularization is normally applied for to mitigate overfitting, such as L2 norm 

regularization. In this study, weight decay is set as 0.0005.  

2) Learning Rate 

Learning rate controls how much the model weights are updated in the 

stochastic gradient descent (SGD). If learning rate is too large, the model will be difficult 

to converge. If learning rate is too small, the solution may be local optimal rather than 

global optimal. Normally, learning rate is 0.01 to 0.001. In this study, learning rate is set 

as 0.001.  

3) Learning Rate Decay 

Learning rate decay is a strategy to balance the tradeoff that large learning rate 

and small learning rate. Large learning rate is good at training speed, but not good for 

model to converge. Small learning rate is the opposite. At the start of training, a 

relatively large learning rate is used to locate a global optimal solution quickly. Then, 

every fixed-step time, learning rate will be reduced by a factor to find the global optimal 

solution.  
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In learning rate decay, two hyperparameters control the whole process: decay 

rate and decay step size. In this study, decay rate is 0.1 and decay step size is 10,000, 

which means every 10,000 times training, the learning rate will reduce to 10% (for 

example, 0.001 to 0.0001).  

4) Momentum 

In SGD, momentum is used to increase the speed of training. Momentum can 

accumulate the gradient of the past steps. This hyperparameter control how much the 

gradient direction of last step affects that of this step. In this study, momentum is 0.9.  

5) Max Iteration 

Max iteration is how many steps (iterations) in the training process. It is 50,000 in 

this study.  

6) Batch Size 

Batch size is the number of training samples in one step (mini-batch). For small 

dataset, the batch size is equal to the dataset size. However, for large dataset, too large 

batch size decreases the speed of the model, and too small batch size will lead to 

underfitting. Therefore, batch size is normally between dozens to hundreds. The batch 

size is set as 128 in this study.  

Table 2: Summary of hyperparameters 

Hyperparameters Value 

Weight decay 0.0005 

Learning rate 0.001 
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Decay rate (learning rate decay) 0.1 

Decay step size (learning rate decay) 10,000 

Momentum 0.9 

Max iteration 50000 

Batch size 128 

 

 

3.5 Data Augmentation 

In this study, the effectiveness of Faster R-CNN is improved by data 

augmentation. Faster R-CNN has no rotation capability because features of objects do 

not rotate accordingly (Cheng et al., 2014). Therefore, the chips are rotated at angles of 

0°, 90°, 180°, 270°, horizontally flipped, and vertically flipped. Thus, the detection 

accuracy of Faster R-CNN is improved based on increasing the input data by rotating 

and flipping (Zalpour et al., 2020).  
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Figure 6: Data augmentation example 

3.6 Human Review 

The detection results of Faster R-CNN were manually reviewed. In this study, 

both positive (with tanks) and negative (without tanks) images were tested. We 

manually identified the number of ASTs in each test image and verified the detected 

objects and their classes.   

3.7 Model Assessment 

In this study, confusion matrix, 3 rates (accuracy rate, precision rate, recall rate), 

and percentage of missed tanks are used to assess the model performance.  

Confusion matrix is a table where samples of each row are in a predicted class, 

while samples of each column are in an actual class. A case that is detected as an object is 
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Positive, otherwise it is Negative. A case that is in an actual class is Positive, otherwise it 

is Negative.  

Table 3: Confusion matrix 

 Actual class 

Positive (P) Negative (N) 

Predicted class 

Positive (P) TP FP 

Negative (N) FN TN 

 

Accuracy (ACC) is the percentage of correctly detected cases in all testing results, 

calculated as follows:   

𝐴𝐶𝐶 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                (6) 

Precision rate (PPV) is the percentage of correctly detected positive cases in all 

predicted positive cases, calculated as follows: 

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                      (7) 

Recall rate (TPR) is the percentage of correctly detected positive cases in all 

actual positive cases, calculated as follows: 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                      (8) 

Percentage of missed tanks (PMT) is the percentage of missed cases in all actual 

positive cases, calculated as follows: 

𝑃𝑀𝑇 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑠𝑠𝑒𝑑 𝑐𝑎𝑠𝑒𝑠

𝑇𝑃+𝐹𝑁
                                                      (9) 
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4. Results and Discussion 

4.1 Training Results 

After training, the losses are shown in Figure 7.  

 

Figure 7: Loss curves 

In Figure 7, to better determine whether the model converges, these five curves 

are smoothed by taking the average every ten values. total_loss curve represents the 

total losses (𝐿(𝑡𝑜𝑡) in Eq (1)). rpn_loss_cls and rpn_loss_box are classification losses 

(𝐿(𝑟𝑝𝑛_𝑙𝑜𝑠𝑠_𝑐𝑙𝑠) in Eq (1)) and regression losses (𝐿(𝑟𝑝𝑛_𝑙𝑜𝑠𝑠_𝑏𝑜𝑥) of RPN in Eq (1)) 

respectively. loss_cls and loss_box are classification losses (𝐿(𝑓𝑟𝑐_𝑙𝑜𝑠𝑠_𝑐𝑙𝑠) in Eq (1)) and 

regression losses (𝐿(𝑓𝑟𝑐_𝑙𝑜𝑠𝑠_𝑏𝑜𝑥) of Fast R-CNN in Eq (1)) respectively. These five curves 
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indicate that the model converged after training. Also, the curves suggest that the 

learning rate is appropriate in this study, because if the learning rate is too high or too 

low, the model will not converge.  

4.2 Testing hyperparameters 

In the testing process, two hyperparameters control the results. One is Non-

maximum suppression (NMS) threshold, the other one is overlap threshold. 

 NMS threshold is used to discard overlapping predicted bounding box. If two 

bounding boxes have IoU larger than NMS threshold, then the bounding box with lower 

predicted probability will be removed. In this study, some of the storage tanks are cut 

off because they are at the edge. To avoid that several bounding boxes represent the 

same tank, the NMS threshold is set as 0.3.  

Overlap threshold controls the predicted probability with which the bounding 

boxes will be kept. In this study, the target is to detect objects as many as possible. In 

other words, higher Recall rate is needed. Because if the objects are wrong, they can be 

manually corrected; otherwise, if a tank is not detected, it cannot be checked by a 

human. As a result, the overlap threshold should be low. In this study, the overlap 

threshold is set as 0.1.  

4.3 Testing Results 
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Figure 8: Confusion matrix of testing results 

In this confusion matrix, the overall accuracy is 75.53%. A total of 1563 closed 

roof tanks, 540 external floating roof tanks, 47 spherical tanks, 67 water treatment tanks, 

and 5 water towers were correctly detected. 90 closed roof tanks, 9 external floating roof 

tanks, 1 spherical tank, and 5 water treatment tanks were missing. To assess the model 

performance, analysis of each class is necessary. The target criteria of a good 

performance in this study are: 1) high TPR and 2) low PMT (percentage of missed tanks).  
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Figure 9: Confusion matrix of closed_roof_tank 

For closed roof tanks, the PPV is 82.92%, TPR is 90.03%. From Figure 8, 90 closed 

roof tanks were not detected, which means the percentage of missed tanks was 5.18%. 

All the detected closed roof tanks were correctly predicted as closed roof tank. In 

summary, the performance of the model on closed roof tank was good because of high 

TPR and low PMT.   

 

Figure 10: Confusion matrix of external_floating_roof_tank 
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For external floating roof tanks, the PPV is 85.85%, TPR is 91.68%. From Figure 8, 

9 external floating roof tanks were not detected, which means the percentage of missed 

tanks was 1.53%. Only 2 external floating roof tanks were wrongly predicted. Actually, 

this was a labeling fault. Two closed roof tanks were labeled as external floating roof 

tank. Excluding this manual problem, the model could well detect external floating roof 

tanks with high PPV, TPR, and PMT.   

 

Figure 11: Confusion matrix of spherical_tank 

For spherical tanks, the PPV is 34.81%, TPR is 60.26%. From Figure 8, one 

spherical tank was not detected, which means the percentage of missed tanks was 1.28%. 

The model’s capacity to detect spherical tanks should be further tested. From the view of 

missed spherical tanks, it performed well for the reason that only one was missed. 

However, the TPR are relatively low. In some cases, the model predicted closed roof 

tanks as spherical tank at a low probability, which may be the reason of low PPV and 

TPR.  
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Figure 12: Confusion matrix of water_treatment_tank 

For water treatment tanks, the PPV is 49.63%, TPR is 89.33%. From Figure 8, five 

water treatment tanks were not detected, which means the percentage of missed tanks 

was 6.67%. The model had good performance on water treatment tanks, because the TPR 

was high, which achieved our target criteria.  

 

Figure 13: Confusion matrix of water_tower 

For water towers, the PPV is 9.43%, TPR is 38.46%. From Figure 8, all water 

towers were detected, which indicated the model could correctly predict water towers. 
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However, the PPV and TPR are low. The reason may be that the samples of water 

towers are much less than other types of tanks.  

5. Conclusion 

In this study, a high-resolution aerial imagery dataset was established. It contains 

five labels of different tank types. Faster R-CNN was applied to train and test this 

dataset. The results show that this dataset can be well trained to complete multi-type 

tank detection task. Also, the pretrained model’s performance on closed roof tanks, 

external floating roof tanks, and water treatment tanks has been demonstrated to be 

excellent.  

Although, this dataset and the pretrained model were enough to achieve the 

objectives of this thesis, future work could focus on the hyperparameters of the model. 

In testing part, the overlap threshold could be adjusted to have a better PPV or TPR. At a 

low overlap threshold, in some cases, several labels were predicted on the same tank. 

Therefore, increasing the overlap threshold may lead to a higher rate for both TPR and 

PPV. In addition to the work of model, more data could be involved in this dataset. 

More samples contain water towers and spherical tanks could be involved to have a 

better pretrained model.  

6. Implications 

To assess the fragility of ASTs in NaTech events, criteria should be different 

depending on the type of a tank. In this study, Faster R-CNN algorithm was 

demonstrated to be excellent on multi-type tank detection. The pretrained model trained 
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from Faster R-CNN will be used to locate tanks and identify their types in more research 

areas to help NaTech event assessment. In addition, a dataset that contains five tank 

types was generated. This dataset is flexibly used to be trained by unsupervised or 

supervised algorithms for object detection tasks, which makes it be a good source for 

scholars to conduct research on artificial intelligence in the further.  
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Appendix A: Image samples 

Image samples of tanks in different types are shown in LabelImg software.   

 

Figure 14: closed_roof_tank 
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Figure 15: external_floating_roof_tank 
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Figure 16: spherical_tank 
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Figure 17: water_treatment_tank 
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Figure 18: water_tower 
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Appendix B: Testing result sample 

 

Figure 19: Testing result sample 
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