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A B S T R A C T

In the rapidly evolving field of medical diagnostics, the challenge of imbalanced datasets, particularly
in diabetes classification, calls for innovative solutions. The study introduces DiGAN, a groundbreaking
approach that leverages the power of Generative Adversarial Networks (GAN) to revolutionize diabetes data
analysis. Marking a significant departure from traditional methods, DiGAN applies GANs, typically seen in
image processing, to the realm of diabetes data. This novel application is complemented by integrating the
unsupervised Laplacian Score for sophisticated feature selection. The pioneering approach not only surpasses
the limitations of existing techniques but also sets a new benchmark in classification accuracy with a 90%
weighted F1-score, achieving a remarkable improvement of over 20% compared to conventional methods.
Additionally, DiGAN demonstrates superior performance over popular SMOTE-based methods in handling
extremely imbalanced datasets. This research, focusing on the integrated use of Laplacian Score, GAN, and
Random Forest, stands at the forefront of diabetic classification, offering a uniquely effective and innovative
solution to the long-standing data imbalance issue in medical diagnostics.
1. Introduction

Diabetes is among the most prevalent chronic diseases worldwide,
impacting millions of people each year and exerting a significant finan-
cial burden on the economy [1,2]. Characterized by impaired insulin
production and utilization, diabetes leads to severe complications like
heart disease, vision loss, and kidney disease [3]. Early diagnosis
is crucial for effective treatment and lifestyle modifications, making
predictive models vital tools for healthcare professionals.

The complexity of diabetes classification is compounded by imbal-
anced datasets, often leading to biased models. While various meth-
ods exist for diabetes classification [4,5], most struggle with dataset
imbalance, a crucial issue the research addresses.

This paper introduces ‘‘DiGAN’’, a novel machine learning frame-
work that utilizes a Generative Adversarial Network (GAN) [6] ap-
proach for imbalanced diabetes classification. The method innovatively
applies GAN, typically used in image processing, to diabetes data,
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demonstrating its efficacy in balancing datasets and improving classifi-
cation accuracy. Incorporating the Laplacian Score for feature selection
further refines the model’s performance.

In pursuing innovative solutions to dataset imbalance, this paper
previously explored SMOTE-based approaches in the domain of Bitcoin
addresses classification, involving a three-class scenario described in
the earlier work [7]. The success of SMOTE-based methods in that
context was encouraging, yielding satisfactory results and highlighting
the potential of advanced data augmentation techniques in handling
imbalanced datasets.

This prior experience prompted the evaluation of the performance
of similar approaches in the context of diabetes classification. The
current study extends this exploration by comparing the effectiveness
of SMOTE-based methods with a novel GAN approach, specifically
tailored for diabetes datasets. This comparison aims to validate the
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utility of GAN in medical data analysis and establish a benchmark
against proven methods in data imbalance correction.

The goal is to bridge the gap in diabetes classification models by
addressing the imbalance in datasets, often overlooked. This approach
is novel and demonstrates significant improvement over existing meth-
ods, particularly in handling imbalanced data, a common challenge in
medical datasets.

The remainder of the paper is organized as follows. Section 2
provides an overview of existing related works. Section 3 describes
the dataset and explains the methodology of the selected approaches.
Section 4 compares the effectiveness of various strategies in correctly
detecting diabetes. Finally, Section 5 concludes the paper and provides
potential future research directions.

2. Related works

When collecting diabetes-related data, various medical organiza-
tions list dozens of indicators; some help diagnose diabetes, and some
are useless or misleading. In the data analysis stage, too many features
will lead to a curse of dimensionality, which will reduce the classi-
fier’s performance and significantly slow down the computation speed.
Therefore, feature selection is essential. X. He et al. [8] introduced
a novel feature selection algorithm called Laplacian score. Compared
with data variance (unsupervised) and Fisher score (supervised) on two
datasets, Laplacian score performed strong effectiveness and efficiency
through experimental results. This proposed algorithm is an unsuper-
vised filter method, while almost all the existing filter approaches are
supervised. It brings us to a new way of conducting feature selection.

Mirza et al. [9] applied SMOTE to solve the imbalance problem in
the data preprocessing step and then selected the best classifier for
a balanced dataset to predict diabetes, concluding that Decision tree
performed the best with an accuracy of 94.7013%. SMOTE is a powerful
method to address imbalance issues. The intention is to apply GAN [10]
to the diabetes dataset and compare the results with SMOTE-based
approaches to evaluate the performance of GAN.

The most popular classifiers in existing studies are Decision tree,
Support vector machine, Naive Bayes, etc. Deepti and Dilip Singh [11]
applied these algorithms to predict diabetes and concluded that Naive
Bayes outperformed the best with the highest accuracy of 76.30%.
In addition to these algorithms, Kayaer and Yildırım [12] proposed a
diabetes diagnosis system using diverse Artificial Neural Networks, Ra-
dial Basis Function and General Regression Neural Network. Compared
to Multi-Layer Perceptron and RBF, GRNN performed best, achieving
80.21%

The proposed framework first applies GAN to address a highly
imbalanced diabetes dataset and then utilizes Lap score for feature
selection. Detailed explanations for the new techniques will be provided
in later sections.

3. Methodology

3.1. Data overview

The Behavioral Risk Factor Surveillance System (BRFSS) is a health-
related telephone survey collected annually by the CDC [13]. The
dataset, derived from a survey, comprises 49,606 observations and 22
variables, encompassing both direct questions posed to participants and
calculated variables based on individual responses. The variables are
characterized as follows.

• Diabetes_012. 0 indicates no diabetes, 1 indicates prediabetes,
and 2 indicates diabetes.

• HighBP. BP is short for blood pressure. 0 indicates the individual
does not have high BP, and 1 indicates high BP.

• HighChol. 0 indicates the individual does not have high choles-
2

terol, and 1 indicates high cholesterol.
• CholCheck. 0 indicates the individual has not had a cholesterol
check in 5 years, and 1 indicates a cholesterol check within five
years.

• BMI. Body mass index is defined as weight divided by height
squared in kg/m2.

• Smoker. 0 indicates the individual has never smoked at least 100
cigarettes in his entire life, and 1 indicates smoking.

• Stroke. 0 indicates the individual has never been told that he had
a stroke, and 1 indicates having a stroke.

• HeartDiseaseorAttack. 0 indicates the individual does not have
coronary heart disease (CHD) or myocardial infarction (MI) and
1 indicates the individual has CHD or MI.

• PhysActivity. 0 indicates the individual has not done physical
activity (not including a job) in the past 30 days, and 1 indicates
doing physical activity.

• Fruit. 0 indicates the individual does not consume fruit daily, and
1 indicates fruit consumption.

• Veggies. 0 indicates the individual does not consume vegetables
daily, and 1 indicates vegetable consumption.

• HvyAlcoholConsump. The term ‘Heavy drinkers’ is defined as
adult men with more than 14 drinks weekly and women with
more than seven drinks weekly. 0 indicates the individual is not
a heavy drinker, and 1 indicates a heavy drinker.

• AnyHealthcare. 0 indicates the individual has no health care
coverage, and 1 indicates one or more health care coverage,
including health insurance and prepaid plans such as HMO.

• NoDocbcCost. 0 indicates that in the past 12 months, he needed
to see a doctor but could not because the cost has not happened
to the individual. 1 indicates this situation has happened to the
individual.

• GenHlth. General health status for the individual. 1 represents
excellent, 2 represents very good, 3 represents good, 4 represents
fair, and 5 represents poor.

• MentHlth. Mental health status for the individual. How many
days out of the past 30 days did the individual feel stressed,
depressed or have emotional problems?

• PhysHlth. Physical health status for the individual. How many
days out of the past 30 days did the individual have physical
illness and injury?

• DiffWalk. 0 indicates the individual does not have serious diffi-
culty walking or climbing stairs, and 1 indicates serious difficulty
walking or climbing stairs.

• Sex. 0 indicates the individual is female, and 1 indicates a male.
• Age. 13-level age categories. 1 represents age 18 to 24, 2 repre-

sents age 25 to 29, 3 represents age 30 to 34, 4 represents age
35 to 39, 5 represents age 40 to 44, 6 represents age 45 to 49, 7
represents age 50 to 54, 8 represents age 55 to 59, 9 represents
age 60 to 64, 10 represents age 65 to 69, 11 represents age 70 to
74, 12 represents age 75 to 79, and 13 represents age 80 or older.

• Education. Education level of the individual, which is a scale
from 1 to 6. 1 or 2 or 3 represents the individual who did
not graduate from high school. 4 represents the individual who
graduated from high school. 5 represents the individual who
attended college or technical school. 6 represents the individual
who graduated from college or technical school.

• Income. Income level of the individual, which is a scale from 1 to
8. 1 or 2 represents the individual’s income is less than $15,000.
3 or 4 represents the individual’s income is $15,000 to less than
$25,000. 5 represents the individual’s income is $25,000 to less
than $35,000. 6 represents the individual’s income is $35,000 to
less than $50,000. 7 or 8 represents the individual’s income is
$50,000 or more.

3.2. Feature selection

There are 21 features in the dataset, leading to a longer computation

time and more memory to store data. In addition, too many features
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will affect the result of classification, so it is necessary to make the
feature selection, and Laplacian score is the chosen technique.

The Laplacian score method evaluates the features within the train-
ing set by assigning a score to each. Then it takes the lowest 𝑘
eatures as the ultimate feature subset, a standard filter method, which
nables the identification of the most significant indicators for diabetes
lassification.

The Lap score of the 𝑟𝑡ℎ feature is represented by 𝐿𝑟. The dataset
ontains 21 features, so 𝑟 can take on values from 1 to 21. The 𝑖𝑡ℎ
ample of the 𝑟𝑡ℎ feature is represented by the variable 𝑓𝑟𝑖. There are 𝑚

samples, so 𝑖 can take values from 1 to 𝑚.
The algorithm is divided into four steps, which can be stated as

follows [8].

• Construction of connected graphs: Construct a nearest neighbor
graph comprising 𝑚 nodes, denoted as 𝑥𝑖 representing the 𝑖𝑡ℎ
node. An edge can link nodes 𝑖 and 𝑗 if they are among the top 𝑘
nearest neighbors of each other. Alternatively, when label details
are available, nodes sharing the same label can be connected by
an edge. Consequently, there exist two approaches to establishing
a connection between two nodes.

Method 1:
𝑥𝑖 and 𝑥𝑗 can be connected with an edge if 𝑥𝑖 and 𝑥𝑗 are among
each other’s 𝑘 nearest neighbors.

Method 2:
When label information is available, it is possible to establish an
edge between two nodes that share the same label, signifying their
connection.
Graph A has different representation methods for learning, where
1 indicates that the two nodes are connected.
For unsupervised learning:

𝐴𝑚×𝑚 ∶ (𝐴𝑖𝑗 ) =
{

1, if 𝑥𝑖 close to 𝑥𝑗
0, otherwise (1)

For supervised learning:

𝐴𝑚×𝑚 ∶ (𝐴𝑖𝑗 ) =
{

1, if 𝐿𝑖 = 𝐿𝑗
0, otherwise (2)

• Weight matrix: If nodes 𝑖 and 𝑗 are connected in the graph, the

weight of the edge between them can be set to 𝑆𝑖𝑗 = 𝑒−
‖𝑥𝑖−𝑥𝑗 ‖2

𝑡 ,
where 𝑡 is a suitable constant. If nodes 𝑖 and 𝑗 are not connected,
then 𝑆𝑖𝑗 = 0. The weight matrix 𝑆 reflects the local structure of
the data space.
If the value of the node pair equals 1 in graph A, a weight 𝑆𝑖𝑗 is
assigned to it.

• Graph Laplacian:
The vector 𝑓𝑟 = [𝑓𝑟1, 𝑓𝑟2,… , 𝑓𝑟𝑚]𝑇 is defined, where 𝑓𝑟𝑖 denotes
the value of the 𝑟th feature for the 𝑖th data point. The diago-
nal matrix 𝐵 is specified as 𝑑𝑖𝑎𝑔(𝑆𝟏), where 𝑆 represents the
weight matrix of the graph. Thus, the graph Laplacian matrix 𝐿
is established as 𝐿 = 𝐵 − 𝑆 [14]. Let

𝑓𝑟 = 𝑓𝑟 −
𝑓𝑟𝑇𝐵𝟏
𝟏𝑇𝐵𝟏

𝟏 (3)

• Laplacian Score: Compute the Lap score of the 𝑟𝑡ℎ feature as
follows.

𝐿𝑟 =
𝑓𝑟

𝑇𝐿𝑓𝑟
𝑓𝑟

𝑇𝐵𝑓𝑟
(4)

Explanation of calculating Laplacian score: A weighted graph is
onstructed to evaluate the feature importance. The similarity between
he 𝑖𝑡ℎ and 𝑗𝑡ℎ nodes is measured by 𝑆𝑖𝑗 . In this context, the feature
mportance can be considered as the extent to which it preserves the
raph’s structure. In other words, a ‘‘good’’ feature is one where two
oints are close to each other only if they are connected by an edge
3

Table 1
The proportion of types.
Type 0 1 2

The number 33 703 4631 11 272
Proportion 0.68 0.093 0.227

in the graph. The subsequent formula is employed to identify good
features, aiming to minimize its value.

𝐿𝑟 =
∑

𝑖𝑗 (𝑓𝑟𝑖 − 𝑓𝑟𝑗 )2𝑆𝑖𝑗

𝑉 𝑎𝑟(𝑓𝑟)
(5)

where 𝐿𝑟 is the Lap score of the 𝑟𝑡ℎ feature, 𝑓𝑟𝑖 − 𝑓𝑟𝑗 is the difference
between the 𝑖𝑡ℎ sample and the 𝑗𝑡ℎ sample on the 𝑟𝑡ℎ feature, and
𝑉 𝑎𝑟(𝑓𝑟) is the estimated variance of the 𝑟𝑡ℎ feature.

Features that preserve the pre-defined graph structure can be se-
lected by minimizing the function ∑

𝑖𝑗 (𝑓𝑟𝑖−𝑓𝑟𝑗 )2𝑆𝑖𝑗 . For a good feature,
the larger 𝑆𝑖𝑗 is, the smaller 𝑓𝑟𝑖−𝑓𝑟𝑗 will be, and therefore the Laplacian
score will tend to be small.

In addition, (5) can be converted to (4) with algebra steps, which
can be found in [8].

3.3. Existing imbalance disposal

As shown in Table 1, the dataset is imbalanced, with type 1 data
accounting for only a tiny proportion. Therefore, resampling methods
are considered to obtain a balanced sample distribution by changing
the original imbalanced sample set and learning an appropriate model.

Three most recently proposed resampling approaches: SMOTE [15],
SMOTE with ENN (SMOTE-ENN) and SMOTE with Tomek links
(SMOTE-Tomek) [16] are included to deal with the imbalance problem.

3.3.1. SMOTE
SMOTE is an oversampling technique introduced through a three-

step algorithmic process.

• Step 1: Assuming 𝑥 is a sample from the minority class, the first
step is to calculate the Euclidean distance from it to all other
samples in the class. Then, from the 𝑘 smallest distances, the 𝑘
nearest neighbors are identified.

• Step 2: Set a sampling ratio according to the proportions of each
type in the imbalanced dataset. For 𝑥, 𝑁 samples (sampling ratio)
are randomly selected from their 𝑘 nearest neighbors.

• Step 3: For each nearest neighbor 𝑜, a new sample is created
according to the formula:

(𝑛𝑒𝑤) = 𝑜 + 𝑟𝑎𝑛𝑑(0, 1) × (𝑥 − 𝑜) (6)

3.3.2. SMOTE-Tomek
Over-sampling can solve the imbalance issue in a dataset with

skewed class distributions, but other problems often remain. The def-
inition of class clusters may be unclear because the examples from
the majority class may take up the space for those of the minority
class. Using a classifier in this situation may cause overfitting. To solve
this problem, Tomek links are applied to do the data cleaning, which
removes examples from both classes that form Tomek links. Then, a
balanced dataset with well-defined class clusters can be obtained.

3.3.3. SMOTE-ENN
SMOTE-ENN is similar to SMOTE-Tomek in its motivation, but it

takes a more thorough approach to data cleaning by removing more
examples. This method uses the class labels of a data point’s three
nearest neighbors to determine whether it should be removed from the
training set. If the class label of the data point differs from that of at
least two of its three nearest neighbors, it is removed.
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Fig. 1. Flow diagram for GAN.

3.4. Proposed imbalance disposal: GAN

The crux of DiGAN’s innovation lies in its specialized Generative
Adversarial Network (GAN) [6] architecture, designed to address the
class imbalance by generating synthetic data statistically similar to
the original minority class data in the diabetes dataset. The archi-
tecture consists of two main components: the generator (G) and the
discriminator (D), which are trained concurrently through adversarial
processes.

3.4.1. Model framework
The GAN model comprises a generator (G) and a discriminator (D),

both multi-layer perceptron structures. The specific number of layers
and neurons in each layer can be adjusted to fit the specific needs of
the problem (see Fig. 1).

3.4.2. Generator (G)
The generator is a neural network that maps vectors from a la-

tent space to the data space, generally conforming to a Gaussian
distribution. The purpose of the generator is to learn the distribution
characteristics of the diabetes data set and then to generate new
data points, which endeavors to produce new data that are nearly
indistinguishable from the actual data set.

• An introductory layer that accepts a noise vector 𝑧 with a dimen-
sionality of 100, sampled from a standard normal distribution.

• A sequence of three fully connected hidden layers consisting of
256, 512, and 1024 units designed to encapsulate the data’s
complexity. A LeakyReLU activation function with an alpha value
set to 0.2 is applied at each layer, permitting a minor gradient
when the unit is inactive, thereby facilitating a healthier gradient
flow during the training phase.

• A dropout strategy is implemented after each hidden layer with
a rate set at 0.3 to mitigate overfitting risks.

• The concluding layer is equipped with units equal to the number
of features in the diabetes dataset, utilizing a hyperbolic tangent
(tanh) activation function to output the synthetic data points.

The architecture of the generator is deliberated to be sufficiently
profound to capture the intricate patterns inherent in the minority class,
allowing the generation of synthetic data with high fidelity.

3.4.3. Discriminator (D)
The discriminator operates as a neural network that attempts to

differentiate between the real diabetes data and those produced by the
generator. The configuration of the discriminator in this study includes:

• An input layer is designed to receive data points from the dataset,
matching the dimensionality of the output from the generator.
4

• A mirrored generator structure comprising three fully connected
hidden layers with a descending order of units from 1024 to 512
to 256. Consistency in the activation function is maintained by
applying LeakyReLU and the same alpha value.

• A solitary neuron at the output layer with a sigmoid activation
function tasked with predicting the probability that a data point
originates from the actual dataset rather than being generated.

The discriminator’s goal is to maximize the likelihood of accurately
categorizing both real and synthetic data points.

3.4.4. Training procedure
The training of DiGAN constitutes an adversarial contest where

the generator and the discriminator are optimized in a synchronized
manner. The generator’s mission is to deceive the discriminator into
categorizing the synthetic data as real, while the discriminator endeav-
ors to differentiate precisely between real and fake data. This process
incorporates:

• Generating synthetic data points from input noise vectors for each
data batch by the generator.

• The discriminator evaluates the real data from the dataset along-
side the new synthetic data.

• Both networks undergo updates based on their respective loss
functions, with the gradients of the generator being fine-tuned
to increase the likelihood of the discriminator misclassifying the
synthetic data as real in subsequent iterations.

3.4.5. Optimization and loss functions
The loss function is the expected sum of the probability distributions

of real and fake samples, where 𝑃𝑑𝑎𝑡𝑎 is the probability distribution of
real samples 𝑋𝑟𝑒𝑎𝑙 and 𝑃𝐺 is the probability distribution of fake samples
𝑋𝑓𝑎𝑘𝑒 generated by G. This loss function is used to measure the quality
of the fake samples generated by G and guide the training of the GAN
network.

𝑉 (𝐺,𝐷) = 𝐸𝑥∼𝑃𝑑𝑎𝑡𝑎 [log𝐷(𝑥)] + 𝐸𝑥∼𝑃𝐺 [log(1 −𝐷(𝑥))] (7)

For D, its purpose is to make the outcome result 𝑙𝑜𝑔𝐷(𝑥 ∼ 𝑃𝑑𝑎𝑡𝑎) of
the sample in 𝑃𝑑𝑎𝑡𝑎 as large as possible and make the outcome result
𝑙𝑜𝑔(1 −𝐷(𝑥 ∼ 𝑃𝐺)) of the sample in 𝑃𝐺 as small as possible, leading to
a greater value of 𝑉 (𝐺,𝐷).

For G, its purpose is to generate 𝑋𝑓𝑎𝑘𝑒 with noise 𝑧 to assign a large
value to D, making the value of 𝑙𝑜𝑔(1−𝐷(𝑥 ∼ 𝑃𝐺)) as small as possible,
and therefore shrink the value of 𝑉 (𝐺,𝐷).

In summary,

𝑉 ∗(𝐺,𝐷) = argmin
𝐺

max
𝐷

𝑉 (𝐺,𝐷) (8)

The Adam optimizer’s hyperparameters, such as the learning rate
and beta coefficients, are chosen based on preliminary tests to ensure
the adversarial networks’ stable training and convergence.

The ultimate goal of the GAN network is to produce a G that
generates high-quality samples that are indistinguishable from real
samples by D. This is achieved when D produces a value of 0.5 for
fake samples generated by G, indicating that it can no longer tell
the difference between real and fake samples. In other words, G has
successfully deceived D and can generate high-quality fake samples.

After solving the imbalance issue, the next step is to classify the dia-
betics. The integration of the above four imbalance processing methods
(GAN and SMOTE-based approaches) with various classification models
will be undertaken (to be described in the following section).
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Algorithm 1 Generative adversarial network
The batch size and the number of steps applied to the discriminator
(D) are assumed to be 𝑚 and 𝑘 in the experiments, where 𝑚 = 105
and 𝑘 = 1.
Denote 𝐷(𝑥) and 𝐺(𝑧) are functions of the discriminator (D) and the
generator (G), respectively.
for the number of epochs do

for 𝑘 steps do
Generate 𝑚 noise samples 𝑧1, 𝑧2, ..., 𝑧𝑚 from prior distribution

𝑃𝐺(𝑧)
Generate 𝑚 real samples 𝑥1, 𝑥2, ..., 𝑥𝑚 from real distribution

𝑃𝑑𝑎𝑡𝑎(𝑥)
Calculate the loss of D:

𝐷𝑙𝑜𝑠𝑠 =
1
𝑚

𝑚
∑

𝑖=1
[log𝐷(𝑥𝑖) + log(1 −𝐷(𝐺(𝑧𝑖)))] (9)

Update the parameters in 𝐷(𝑥) by gradient descent.
end for
Generate 𝑚 noise samples 𝑧1, 𝑧2, ..., 𝑧𝑚 from prior distribution

𝑃𝐺(𝑧)
Calculate the loss of G:

𝐺𝑙𝑜𝑠𝑠 =
1
𝑚

𝑚
∑

𝑖=1
log(1 −𝐷(𝐺(𝑧𝑖))) (10)

Update the parameters in 𝐺(𝑧) by gradient descent
end for

3.5. Classification models

This section will introduce some classic machine learning models:
K-nearest Neighbor, Random forest and Extreme gradient boosting to
classify diabetics.

𝑘-NN can be applied in classification that a new label is assigned for
the unlabeled test data based on the majority vote, which is the class
represented mainly by its 𝑘 nearest neighbor points [17]. The value of 𝑘
s chosen from cross-validation, leading to the minimum error rate in a
efined range. Euclidian, Manhattan, and Hamming distances are three
rimarily used methods for calculating distances between the new test
ata and surrounding training points.

RF is a classifier that uses multiple trees to train and predict,
nd there is no correlation between the trees [18]. After the forest
s generated, a new sample is classified separately by each decision
ree. The category selected by the most decision trees is the ultimate
lass to which the piece belongs. Random forest reduces the risk of
verfitting and works well with high-dimensional data. After training,
he significance of features can be judged from the values of Gini
mportance and mean decrease in impurity (MDI).

XGB is an implementation of the Gradient Boosting framework that
ses parallel tree boosting to solve data science problems efficiently and
ccurately [19]. It is often referred to as GBDT or GBM. The Boosting
lgorithm aims to integrate many weak classifiers to form a robust clas-
ifier. As one of the boosting algorithms, XGBoost integrates many tree
odels into a robust classifier, and the trees are included in sequential

orm. All independent variables are given weights and fed into the
ecision tree to obtain the predicted results. For mispredicted variables,
heir weights are increased to make it easier to spot errors. Integrating
hese classifiers significantly improves the algorithm’s accuracy and is
idely used to solve regression and classification problems.

.6. Classification evaluation

This section introduces a model selection criterion called the
eighted F1-score, which is an appropriate method for a 3-class classi-

ication problem.
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Table 2
The balanced training set.

Method # type 0 # type 1 # type 2

GAN 26962 (33.3%) 26962 (33.3%) 26962 (33.3%)
SMOTE 26947 (33.3%) 26947 (33.3%) 26947 (33.3%)
SMOTE-ENN 11996 (31.99%) 13849 (36.93%) 11655 (31.08%)
SMOTE-Tomek 26132 (33.09%) 26592 (33.67%) 26259 (33.24%)

Table 3
Selected features.

Feature Selection Feature Selection

HighBP Selected AnyHealthcare ×
HighChol Selected NoDocbcCost Selected
CholCheck × GenHlth Selected
BMI Selected MentHlth Selected
Smoker Selected PhysHlth Selected
Stroke Selected DiffWalk Selected
HeartDiseaseorAttack Selected Sex Selected
PhysActivity Selected Age ×
Fruits × Education Selected
Veggies × Income ×
HvyAlcoholConsump Selected

First, the process is treated as three 2-class classification problems:
type 0/others, type 1/others, and type 2/others, to obtain three pre-
class F1-scores. Then, multiply them by the proportion of each category
to get the weighted F1 score.

Weighted F1-score = 𝐹0 × 𝑝0 + 𝐹1 × 𝑝1 + 𝐹2 × 𝑝2 (11)

4. Results

This section presents the application of GAN to address imbal-
ance issues in diabetes classification and the comparison with other
algorithms, as well as the features selected using the Laplacian score.

The dataset is divided into a training set and a test set with propor-
tions of 80% and 20%, respectively. There are 39,685 observations in
the training set and 9,921 in the test set.

4.1. Balanced dataset

Imbalance processing is conducted on the training set using GAN
and SMOTE-based approaches. The type 0 data with the largest pro-
portion is selected as the resampling standard to prevent information
loss. Consequently, only the type 1 and 2 data are resampled. In the
balanced dataset, the number of each type is presented in Table 2.

4.2. Feature selection

The Lap score of each feature in the training set is calculated,
and the corresponding 15 features based on the lowest 15 scores are
identified. The results are presented in Table 3.

Through extensive experiments, it has been observed that selecting
the top 15 features yields the best results. If the number of features is
less than 15, the F1-scores will decrease, while when the number is 15,
the F1-scores will increase by about 0.1%. Moreover, when the number
exceeds 15, the F1-scores almost stay the same.

It is worth noting that, in addition to medical indicators, social
factors such as education influence diabetes are selected.

4.3. Classification results

Now, numerical results are presented to demonstrate the perfor-
mance comparison of different machine learning methods. Fig. 2 below
compares weighted F1-scores between machine learning algorithms.
As shown in Fig. 2, the F1-scores with SMOTE-based approaches are

all obviously worse than GAN. Among them, RF with GAN has the
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Fig. 2. Classification results.

best performance, reaching an F1-score of 90%, which is well ahead
of others.

The excellent performance of GAN is closely related to how it
generates data, which absorbs more original information. The generator
(G) captures the distribution of sample data and is a binary classifier
to determine whether the input is real data or generated samples. By
learning the characteristics of real data, the distribution of sample data
can be estimated, and then new samples similar to training samples can
be generated. The parameters of G are much less than the amount of
training data, so G can discover and internalize the nature of the data
to generate it better.

In the next section, a visual approach will explain why GAN achieves
better results in dealing with imbalance issues.

Setup parameters
KNN n_neighbors = 10, leaf_size = 30, weights = uniform,

metric = minkowski
RF n_estimators = 100, min_samples_split = 2, criterion =

Gini, min_weight_fraction_leaf = 0, max_features =
None, bootstrap = True

XGB objective = binary : logistic, random_state =
2,max_depth=8, n_estimators = 50

4.4. Visualization of imbalance processing

The generated data is plotted versus the original data to explore
why GAN performs better than SMOTE-based approaches in dealing
with imbalance issues. The comparison of data distributions generated
by different techniques helps in identifying the reasons behind the
observed performance differences.

4.4.1. Dimension reduction
With 15 features influencing diabetes, dimensionality reduction

is necessary for visualization. Therefore, Principal Component Anal-
ysis (PCA) is conducted on the balanced training set to extract the
principal components first. The cumulative contributions of principal
components are presented in Table 4.

Table 4 shows that the cumulative contributions of the first two
principal components exceed 75% for each imbalance technique. There-
fore, the first two principal components are utilized to draw
2-dimensional graphs for visualization.
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Table 4
Cumulative contributions of different imbalance techniques.

PCs PC1 PC2 PC3 PC4 PC5 PC6 ...

GAN 0.524 0.768 0.946 0.988 0.993 1 1
SMOTE 0.516 0.753 0.932 0.985 0.991 1 1
SMOTE-ENN 0.519 0.764 0.95 0.99 0.994 1 1
SMOTE-Tomek 0.522 0.762 0.947 0.989 0.994 1 1

4.4.2. Visualization
Once the principal components are selected, the generated and

original data are plotted to observe distribution differences.
From Fig. 3, it is evident that SMOTE effectively captures the bound-

ary, encompassing both type 1 and type 2 points. The distributions of
the generated points almost coincide with the original points, with a
few points outside the boundary.

Fig. 4 shows that the overall shapes of the points generated by
SMOTE-ENN are similar to the original points. However, their bound-
aries do not overlap. The boundaries of the generated points shift
slightly to the left. There are also a few points beyond the boundary.

From Fig. 5, it is observed that the distributions of the gener-
ated points by SMOTE-Tomek are remarkably similar to SMOTE. This
similarity is one of the reasons why these two imbalance processing
methods achieve comparable weighted F1-scores. Most of the generated
points are within the boundaries of the original points.

GAN will do the factorization when augmenting data, resulting in
the scale being different from the original data. So, the generated
points are drawn separately from the original ones, their distributions
observed, and compared with SMOTE-based approaches.

From Figs. 6 and 7, it can be observed that the distributions of the
points generated by GAN and the original points appear different. Still,
upon drawing the outlines of the generated points, they are found to be
highly similar to the outlines of the original points. It is also how GAN
generates data, which can estimate the data distribution by learning
noise.

By contrast with the visualization, the distributions of the points
generated by GAN are pretty different from SMOTE-based approaches.
Moreover, it is speculated that GAN achieves better results than
SMOTE-based techniques.

5. Conclusion

This study marked a significant stride in diabetes classification
by ingeniously integrating the Laplacian score, Generative Adversarial
Network (GAN), and Random Forest (RF). The approach’s novelty
lied in utilizing GAN for data augmentation, effectively countering
the challenges posed by imbalanced datasets. The result showed a
notable enhancement in model performance, evidenced by a 20%
increase in the F1-score compared to traditional SMOTE methods,
thus demonstrating a more reliable solution for diabetes diagnosis and
management.

This work also addressed a critical gap in diabetes classification and
paved the way for future research. It is envisioned that the principles
of the method could be applied to other medical conditions where data
imbalance poses a significant challenge. The next phase of research will
aim to refine the theoretical foundations of the approach and improve
model interpretability, which is essential for real-world applications.

The method’s ingenuity can be extended beyond mere performance
metrics. By adapting GAN, traditionally linked with image data, to a
multi-featured diabetes dataset, its versatility and untapped potential in
diverse applications are showcased. As a result of this successful adap-
tation, GAN is becoming more applicable to complex, multidimensional
datasets typical of medical research and beyond.
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Fig. 3. Visualization of SMOTE.

Fig. 4. Visualization of SMOTE-ENN.

Fig. 5. Visualization of SMOTE-Tomek.

Fig. 6. Visualization of GAN type 1 points.
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Fig. 7. Visualization of GAN type 2 points.
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