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Abstract Aerosol pH is a useful diagnostic of aerosol chemistry for formation of secondary aerosol
and has been hypothesized to be a key factor in specific chemical reaction routes producing sulfate and
nitrate. In this study, we measured hourly concentrations of water‐soluble ions in particulate matter with an
aerodynamic diameter less than 2.5 μm, along with gaseous pollutants in Tianjin, China, from 4 to 31
January 2015. The following source contributions to water‐soluble ions were estimated by positive matrix
factorization: secondary sulfate (13%), secondary nitrate (44%), coal (14%), vehicle (16%), and dust (13%).
ISORROPIA‐II was used to investigate the complex relationships among aerosol pH, ammonia, and
secondary aerosol formation. The estimated hourly aerosol pH varied from−0.3 to 7.7, with an average of 4.9
(±0.78); the median value was 4.89, and the interquartile range was 0.72. During less polluted conditions,
aerosol pH ranged from less than 0 to about 7; during heavily polluted conditions, pH was close to 5 (3.9–7.9)
despite large amounts of sulfate. Sufficient ammonia/ammonium was present to balance high sulfate and
nitrate formation. NH4

+/NH3 (g) helped stabilize pH while nonvolatile cations contributed less to
decreasing aerosol acidity. High acidy (pH< 3), light pollution (total water soluble ions < 30 μg/m3), and low
water content (less than 5 μg/m3) were more correlated with higher rates of sulfate formation than nitrate
formation in the winter.

Plain Language Summary Megacities in China and elsewhere experience very smoggy days that
get continuously worse during haze episodes. The high levels of smog are created both from directly emitted
particles and the formation of more particulate matter from gas‐phase reactions. Scientists are not able to
fully explain how so much smog is formed so rapidly during intense haze periods. Ammonia was found to
stabilize the acidity of the aerosols, but the aerosols remained acidic with pH of around 4. Here detailed
hourly measurements of many species are used to elucidate the importance of ammonia, which can
potentially neutralize acidic gases and aqueous particles.

1. Introduction

Aerosol acidity, as characterized by pH (hydrogen ion activity expressed on a logarithmic scale), influences
aerosol growth and concentrations via secondary aerosol formation and gas‐aerosol partitioning (Jang et al.,
2002; H. Y. Li et al., 2018; Meskhidze et al., 2003; Pattatyus et al., 2018; Surratta et al., 2010). Fine particulate
matter, much of which can be acidic (Lawal et al., 2018; Silvern et al., 2017; Song et al., 2018, 2019; Weber
et al., 2016), is also associated with harmful effects on human health. Particulate matter can also have nega-
tive environmental effects, such as reduced visibility and damage to ecological systems and historical monu-
ments (Bouwman et al., 2002; Cheng et al., 2011; Huo et al., 2012; Ren et al., 2011; Tang et al., 2010; W.
Wang, Liu, et al., 2006). A particular focus is on fine aerosols, that is, PM2.5 (particulate matter with an
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aerodynamic diameter less than 2.5 μm) because of the associated health and visibility impacts, along with
the associated regulatory issues.

Previous studies have found that aerosol pH varies spatially and temporally in response to secondary aerosol
formation, meteorological conditions, and primary emissions of water‐soluble (WS) ions and gaseous
precursors (Hu et al., 2014; Yue et al., 2009; Zhang et al., 2012). Inorganic WS ions including NH4

+,
SO4

2−, and NO3
– generally account for one third of particulate matter mass in urban atmospheres (Liu

et al., 2008; Putaud et al., 2004; Yang et al., 2011) and are major determinants of aerosol pH (Cheng et al.,
2011; He et al., 2012). Emissions of NH3 (g) gas lead to the formation of NH4

+, which plays an important role
in neutralizing acidic aerosol particles (McMurry et al., 1983; Murphy et al., 2017) and reacts with HNO3 (g)
and other acidic gases to form secondary aerosol. In addition, highly hygroscopic inorganic species like
NH4

+, SO4
2−, and NO3

− are closely associated with aerosol water content, which affects aerosol pH (Guo
et al., 2015; L. J. Li et al., 2018; Murphy et al., 2017).

Systematic studies that link aerosol pH with primary source emissions and secondary formation mechan-
isms and identify the primary drivers of spatiotemporal pH variations are still scarce despite the important
role pH may play (Shi et al., 2017). Specifically, the effect of the availability and behavior of NH3 (g) and
NH4

+ on aerosol pH is still poorly understood. In this study, we used ISORROPIA‐II (Fountoukis &
Nenes, 2007; Guo et al., 2015; Song et al., 2018), a gas‐aerosol thermodynamics equilibrium model and
detailed hourly field observations to investigate the relationships among aerosol pH, sources of emissions
of WS ions and their precursors (especially NH3 (g) and NH4

+), and secondary formation of inorganic
aerosols. ISORROPIA‐II has been applied in many past studies and has proven to be effective in calculating
aerosol water content and pH (Guo et al., 2015; Shi et al., 2017).

2. Methods and Materials
2.1. Sampling Sites and Chemical Analysis
2.1.1. Sampling Sites
Sampling was conducted in the center of Tianjin, a coastal megacity in the North China Plain, from 4 to 31
January 2015 (Figure S1). Samples were collected 22 m above ground level in an area surrounded by residen-
tial buildings and located approximately 200 m away from a heavily trafficked major road. As found by
others (Gao et al., 2015; Shao et al., 2018; Yu et al., 2019), fine particulate is the dominant mode for PM in
winter. In Shen et al.'s (2011) work, PM2.5/PM10 ratios were about 0.71; while the ratios of NH4

+, NO3
−,

and SO4
2− for PM2.5/PM10 were 0.98, 0.85, and 0.89 in winter. In Shao et al.'s (2018) work, PM2.5/PM10 ratios

were 0.82–0.86, and ratios of NH4
+, NO3

−, and SO4
2− for PM2.5/PM10 were 0.93, 0.97, and 0.80 during haze

episodes. In Yu et al.'s (2019) work, the PM2.5/PM10 ratio was 0.80 and ratio of ion subtotal (NH4
+, NO3

−,
and SO4

2−) for PM2.5/PM10 was 0.83 in winter. In Shen et al.'s (2009) work, the PM2.5/TSP ratio was about
0.52 during haze episodes, and the ratios of NH4

+, NO3
−, and SO4

2− for PM2.5/TSP were 0.96, 0.80, and
0.84. In Q. Zhang et al.'s (2015) work, the PM2.5/TSP ratio was about 0.54 during haze episodes in winter,
while the ratios of NH4

+, NO3
−, SO4

2−, Na+, K+, and Cl− for PM2.5/TSP were 0.8, 0.8, 0.7, 0.7, 0.8, and
0.7. Some base cations (such as Ca2+ and Mg2+) showed relatively lower ratios (0.3 and 0.4) for PM2.5/
TSP; however, their concentrations were lower (10.8 and 0.7 μg/m3 for Ca2+ and Mg2+) than those of
NH4

+ (23.6 μg/m3), NO3
− (36.6 μg/m3), and SO4

2− (55.3 μg/m3; Q. Zhang et al., 2015). Based on the findings
of previous studies and due to the concern with its impacts about health impacts and haze, this work focuses
on fine mode particulate.

2.2. Aerosol Water‐Soluble Ion Analysis

Inorganic WS ions were measured hourly by an ambient ion monitor (AIM, URG Corporation, URG9000B).
The AIM instrument was operated with a denuder to capture gases (such as HNO3 gas) that would otherwise
interfere with the aerosol measurements. The same instrument has been successfully used in several field
campaigns (Shi et al., 2017; Wu & Wang, 2007). Briefly, the instrument consists of a particle collection unit
and two ion chromatographs (IC) for chemical analysis. The sample inlet was equipped with a PM2.5 sharp‐
cut cyclone and the samples were collected at a flow rate of 3 L/min.

The URG9000B has the capability to measure mass concentrations of major inorganic ions in aerosols using
two ICs, including five major cations (NH4

+, Na+, K+, Ca2+, Mg2+), five anions (SO4
2−, NO3

−, Cl−, F−,
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NO2
−) and gases (such as HNO3 gas, etc). The analysis is performed using 20 mM methanesulfonic acid for

cation analysis and 0.08 mM sodium carbonate/0.01 mM sodium bicarbonate for the anion system. Both ICs
are operated in isocratic elution at a flow rate of 0.5 mL/min.

Coarse mode particle composition measurements were not made during this period. Coarse mode PM can
react with nitric acid gas to form coarse mode nitrate (Gao et al., 2015; Shao et al., 2018) and remove nitric
acid, thus preventing it from affecting the thermodynamics of the PM2.5 fraction.
2.2.1. Measurements of Trace Gases
Hourly concentrations of trace gaseous pollutants (including NH3(g), SO2, NO2, O3, and CO) were mea-
sured. SO2, NO2, O3, and CO were measured using commercially available instruments (Thermo
Instruments, Model 42i for NO2, Model 43i for SO2, Model 48i for CO, Model 49i for O3). NH3 (g) was mea-
sured by the Thermo Scientific™ Model 17i.

2.3. Source Apportionment Modeling

Positive matrix factorization (PMF) is a useful tool to infer potential source contributions of particulate
matter. In this work, PMF was used to estimate the source contributions to total water‐soluble ions (TWI).
PMF (Paatero & Tapper, 1994) attempts to decompose the data matrix X (m × n: m is the number of samples
and n is the number of chemical species) into two matrices: the source profile matrix F (P × n: P is the
number of source categories) and the source contribution matrix G (m × P). F and G are constrained to be
nonnegative (Al‐Dabbous & Kumar, 2015; Habre et al., 2011; Liu et al., 2008; Manousakas et al., 2015;
Parworth et al., 2015):

xij ¼ ∑p
p¼1gipf pj þ eij i ¼ 1;…; I; j ¼ 1;…; Jð Þ; (1)

where xij is the measured concentration of the jth species in the ith sample, fpj is the concentration of the jth
species in pth source, gip is the contribution of pth source to the ith sample, eij is the portion of the measure-
ments that cannot be fitted by the model (residuals), and p is the number of factors (Amato et al., 2009;
Amato & Hopke, 2012; Paatero & Tapper, 1994).

The goal of PMF is to minimize the “objective function” Q, which is the sum of the squares of residuals, eij,
weighted inversely by the standard variation δ2ij of the data values xij:

Q Eð Þ ¼ ∑m
i¼1∑

n
j¼1 eij=δij

� �2
; eij ¼ xij−∑

p
p¼1 gipf pj

i ¼ 1; 2::…m; j ¼ 1; 2::…n
(2)

where eij is the “residual” for the jth compound of the ith sample and σij is the “uncertainty” in the jth
compound of the ith sample, which is used to downweight corresponding observations that include
sampling errors, uncertainties associated with detection limits, missing data, and outliers (Paatero,
2007). Specifically, the online ambient measurement data set (ions and gases) was introduced into the
PMF model to develop a set of factors that can be linked to potential source contributions. In this work,
xij is the measured concentration of the jth WS ions in the ith sample, fpj is the concentration of the jth
WS ions in pth source, and gip is the contribution of pth source to TWI for the ith sample. More
detailed information can be found in our previous works (Shi et al., 2017) and the
supporting information.

2.4. Calculation of Ion Balance of Particulate Matter

In addition to chemical composition, PM2.5 acidity is also important as a diagnostic of aerosol composi-
tion and effects on potential chemical reaction routes (Cheng et al., 2014; Sun et al., 2010). The ratio of
AE (anion equivalents) and CE (cation equivalents) has been used to indicate the acidity of atmospheric
aerosol (Gao et al., 2015). The calculation of particulate anion and cation equivalents are as follows
(Gao et al., 2015):

AE ¼ NO3
−½ �=62þ SO4

2−
� �

=48þ Cl−½ �=35:5 (3)

CE ¼ NH4
þ½ �=18þ Ca2þ

� �
=20þ Kþ½ �=39þ Mg2þ

� �
=12þ Naþ½ �=23 (4)
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where [NO3
−], [SO4

2−], [Cl−], [NH4
+], [Ca2+], [K+], [Mg2+], and [Na+] represent the mass concentration

(μg/m3) of these ionic species in the PM2.5 samples. The ratio of AE/CE has been used to represent the acid-
ity of particulate matter (Gao et al., 2015). AE/CE ratios close to 1 suggest that particles are more neutral,
ratios larger than 1 indicate that particles are in acidic condition, and ratios smaller than 1 indicate alkaline
conditions. We have adopted this approach for the purpose of investigating ion balance. We acknowledge its
limitations (Hennigan et al., 2015) and do not attempt to accurately characterize aerosol pH using this
approach.

2.5. Aerosol pH Calculation

ISORROPIA‐II (http://nenes.eas.gatech.edu/ISORROPIA/index_old.html or https://isorropia.epfl.ch) was
applied in this work to calculate aerosol pH (Fountoukis &Nenes, 2007). ISORROPIA‐II is a thermodynamic
equilibrium model for the K+

‐Ca2+‐Mg2+‐NH4
+
‐Na+‐SO4

2−
‐NO3

−
‐Cl−‐H2O aerosol system (Fountoukis &

Nenes, 2007; Weber et al., 2016). It has been used in many studies to estimate aerosol pH. Further descrip-
tions of this model can be found elsewhere (Fountoukis & Nenes, 2007; Guo et al., 2015; Weber et al., 2016).
In this study, ISORROPIA‐II was executed in the forward mode and the metastable state. In the forward
mode, total concentrations, including gas and WS‐ion concentrations, are input into the model, while the
reverse mode only requires WS‐ion concentrations. Observed inorganic gases and condensed phase pollu-
tant concentrations, including Na+, SO4

2−, TNH4
+ (NH4

+ + NH3 (g)), TNO3
− (NO3

− + HNO3(g)), Cl
−,

Ca2+, K+, and Mg2+, along with relative humidity and temperature data, were input into ISORROPIA‐II
to calculate pH. Results from past studies suggest that this approach works well, and it closely reproduces
observed species partitioning between gas phase and aerosol constituents (Fountoukis & Nenes, 2007;
Murphy et al., 2017). Additionally, we used E‐AIM (mode IV; http://www.aim.env.uea.ac.uk/aim/
model4/model4a.php) to calculate activity coefficients and pH and to examine the effect of the activity coef-
ficients on pH. E‐AIM (mode IV) models the H+

‐NH4
+
‐Na+‐SO4

2−
‐NO3

−
‐Cl−‐H2O system. Crustal cations

(e.g., Ca2+, Mg2+, and K+) can be considered as an equivalent amount of Na+. Mode IV of E‐AIM (mode IV)
is limited to RHs above 60%.

2.6. Calculation of Secondary Formation Rates

The formation of ions is closely related to their corresponding gaseous precursors (Ziemba et al., 2007).
Sulfate can originate from primary emissions, such as coal combustion, and also from secondary formation.
In this work, we mainly focus on secondary sulfate, whose contributions are estimated by PMF. Thus, we
refer to sulfate as “secondary sulfate” ((NH4)2SO4) henceforth. Sulfate is formed from SO2 through gas‐
phase, liquid‐phase, and heterogeneous processes, although a small fraction is directly emitted as a product
of combustion (Pandis & Seinfeld, 1989). Nitrate is formed from reactive oxidized nitrogen compounds and
their oxidation products. Ammonium is formed from NH3 (g), the primary alkaline trace gas in the atmo-
sphere, reacting with atmospheric acids such as nitric (HNO3), hydrochloric (HCl), and sulfuric acids
(H2SO4). In this work, we assume that nitrate and sulfate are secondary. SOR (sulfur oxidation ratio;
equation (5)) and NOR (nitrogen oxidation ratio; equation (6)) are indices measuring the extent to which
SO2 and NO2 are converted to SO4

2− and NO3
− (Colbeck & Harrison, 1984; Kaneyasu et al., 1999; Ohta &

Okita, 1990; Xu et al., 2017):

SOR ¼ SO2−
4

SO2−
4 þ SO2

(5)

NOR ¼ NO−
3 þHNO3 gð Þ

NO−
3 þHNO3 gð Þ þ NO2

(6)

where SOR is the ratio of sulfate sulfur to “total” sulfur (as sulfate plus sulfur dioxide) and NOR is the ratio of
nitrate nitrogen and HNO3 (gas) to “total” oxidized nitrogen (as nitrate, HNO3 (gas) plus nitrogen dioxide).
High SOR and NOR values imply that the photochemical oxidation of precursor gases has led to the near‐
total conversion of gaseous precursors to sulfate‐ and nitrate‐containing secondary aerosol. The measure-
ments here do not provide organic sulfate or nitrate aerosols and gases.

We also calculated NOR* and SOR*, using NOx and s‐SO4
2− (SO4

2− estimated to come from secondary for-
mation) in the calculation. Additional discussion is presented in the supporting information. In past work,
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NO2 and SO4
2−were more frequently used for NOR and SOR, so in this work, we focus on the SOR and NOR

results, noting that the use of NOR* and SOR* does not change the result of the discussion.

3. Results and Discussion
3.1. Aerosol pH

Using high temporal resolution (1‐hr) online instruments, we measured concentrations of WS ions and
gaseous pollutants in Tianjin (Figure S1), a megacity in China, during January 2015, a period with multiple
intense haze episodes (Figures 1 and S3). It is recognized that aerosol pH can vary with particle size, and the
available measurements are only for PM2.5, without further size segregation. Also, the role of organic matter
(concentrations of which were not available) has been shown to be relatively small (0.3 pH units) in other
studies, and thus, it is not considered here (Fang et al., 2017; Guo et al., 2015, 2016). To evaluate the perfor-
mance of ISORROPIA‐II, we compared the concentrations calculated by ISORROPIA‐II with measurements
for NH3 (g), NH4

+, NO3
−, and HNO3 (g). The regression plot of calculated NH3 (g) against measured values

is shown in Figure S2. For NH3 (g), NH4
+, and NO3

− slopes were from 0.66 to 0.91 with Pearson's R of
0.88–0.94. However, HNO3 (gas) has a low and negative correlation: −0.15. This is due, in part, to the high
ammonia levels making the modeled HNO3 (gas) more sensitive to errors in species measurements. In addi-
tion to ISORROPIA‐II, we used E‐AIM to calculate the pH and the H+ activity coefficients for some samples
to compare the pH estimated by different models and to evaluate the effect of the H+ activity coefficient on
pH. For the same samples, we found the mean pH from E‐AIM was 4.1, a little bit lower than from
ISORROPIA‐II (mean pH = 4.7), and the influence of H+ activity coefficients on pH was weaker than that
of H+ molality (log10γ(H

+) = 0.32 ± 0.22, γ(H+) is the activity coefficient of H+), which agrees well with
other recent assessments (Jia et al., 2018; Song et al., 2018).

NH4
+, SO4

2−, and NO3
− were found to be the most abundant inorganic WS ions, contributing to approxi-

mately 70% of TWI (Figure 1). Concentrations of these WS ions increase with levels of their precursor gases
(SO2, HNO3(g), and NH3 (g); Figure S3) and with total PM levels. The estimated aerosol pH ranged from
−0.3 to 7.7, with an average value of 4.9 ± 0.8 (mean ± SD); the median value was 4.89 and the interquartile
range was 0.72. Most of the aerosol pH values were around 4–6, with only a small fraction of aerosols having
a pH above 7 or below 4 based on bulk composition. We found that aerosol pH changed considerably at

Figure 1. Temporal concentration variations of inorganic water‐soluble ions and PM2.5. For each species, hourly concen-
trations were observed. Good correlations among SO4

2−, NO3
−, and NH4

+ were obtained: R= 0.78 for SO4
2− and NO3

− ,
R = 0.80 for SO4

2− and NH4
+, and R = 0.86 for NO3

− and NH4
+. Detailed information for other ions and gases are

provided in Figure S3.
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different pollution levels (as characterized by TWI; Figures S4a and S6). During less polluted time periods
(TWI < 30 μg/m3), aerosol pH varied more (from −0.3 to 7.0 with an average of 4.7 ± 0.9) and was
typically acidic (except for a very small fraction with pH higher than 6). During highly polluted time
periods (TWI > 30 μg/m3), aerosol pH changes were smaller (from 3.9 to 7.7 with an average of 5.0 ± 0.6).
A statistically significant difference (p < 0.01) in pH was found between the highly polluted and less
polluted time periods.

3.2. Aerosol pH and NH4
+/NH3 (g)

Similar results were observed between aerosol pH and measured NH4
+ (and measured NH3 (g); Figures 2

and 3). When NH4
+ or gas‐phase NH3 (g) are found at lower levels (NH4

+ < 3 μg/m3), aerosol pH increases
along with concentration of NH4

+ or NH3 (g) (see Figure 2, blue circle). During more polluted time periods
(Figures 2 and 3, blue circle), aerosol pH is relatively constant as measured NH4

+ (or NH3 (g)) concentra-
tions increases. At higher pollution levels, the relationship between pH and ammonia/ammonium becomes
more nonlinear. Figure S8 also shows the nonlinear relationship between activity coefficients and NH4

+

concentrations at high pollution levels. This shows that ammonia availability has a critical effect on pH
when pollution levels are low, but these conditions occur in a minority of cases. Another study suggested
that pH would increase by 1 unit for a factor of 10 increase in NH3 (g) (Guo et al., 2017), which is consistent
with our findings for lower concentrations but not for higher pollution levels. This is due, in part, to thermo-
dynamic buffering and different source contributions (increased dust and coal fly ash levels) during more
heavily polluted time periods and because aerosol nitrate formation becomes more thermodynamically
favorable at lower temperature and moderate pH (3–6) due both to the abundance of ammonia/ammonium
and nonvolatile cations.

3.3. Source Influence on pH

In order to explore source influence on pH, PMFwas applied to analyze the source contribution to TWI. Five
factors were resolved (Figure S5): secondary sulfate (13% of TWI), secondary nitrate (44% of TWI), coal com-
bustion (14% of TWI), vehicle exhaust (16% of TWI), and crustal dust (including construction dust and road

Figure 2. Relationship between pH and NH4
+ at different source contribution levels. In less polluted time periods (blue circle), pH increases with NH4

+ levels.
In heavily polluted time periods (red circle), pH stayed in a narrow range. Heavily polluted periods were typically dominated by secondary sulfate; as
sulfate increased, so did NH4

+. Less polluted period: total WS‐ion concentrations (TWI) < 30 μg/m3. Heavily polluted period: total WS‐ion concentrations (TWI) >
30 μg/m3. SS = secondary sulfate, SN = secondary nitrate.
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dust; 13% of TWI). In the relationship between pH and ammonium/ammonia, periods that were dust‐rich
and mixed sulfate‐nitrate‐coal regions were identified according to the relative contributions of those
factors (Figure 3). Table S1 shows the average source contribution (%), concentrations (μg/m3) of NH3 (g)
and TWI, and pH in dust‐rich and mixed regions. Dust‐rich PM has a relatively high pH (4.8) and occurs
at lower ammonia gas levels (<10 μg/m3; Figure 3) due to the higher levels of dust (15%) which
contributed nonvolatile cations. The mixed sulfate‐nitrate‐coal region typically occurs with high ammonia
gas levels (>15 μg/m3, heavily polluted period; Figure 3), and the pH range remains relatively constant
(around 4–6; average of 5.1). During haze episodes, although there is more sulfate and nitrate present due
to cations associated with coal combustion (i.e., both in the primary PM as well as the ammonium
associated with sulfate formation), there is also ammonia available, leading to less acidic aerosol
compared with typical conditions during clean periods.

Additionally, we tested the correlations between pH and source contributions (μg/m3) under less and more
heavily polluted levels and found that coal (Pearson's R = 0.21 during heavily polluted periods and 0.27 dur-
ing less polluted periods) and dust (Pearson's R = 0.12 during heavily polluted periods and 0.26 during less
polluted periods) showed weak positive relationships with pH while vehicles (Pearson's R = −0.08 during
heavily polluted periods and −0.13 during less polluted periods) and secondary sulfate (Pearson's R =
−0.05 during heavily polluted periods and −0.22 during less polluted periods) showed weak negative rela-
tionships (Table 1). This is because dust and coal contributed more cations (Ca2+, Mg2+, NH4

+, etc.) while
vehicles and secondary sulfate contributed more anions (SO4

2−) or NOx (precursor of NO3
−). However, it is

notable that the correlation between pH and secondary nitrate were weakly negative (Pearson's R = −0.05)
during heavily polluted conditions while moderately positive (Pearson's R = 0.40) for less polluted condi-
tions. The low correlations show that the relationship between pH and sources is nonlinear, which is not sur-
prising considering that pH is measured on a nonlinear (log) scale, that the activity coefficients will respond
in a nonlinear fashion, and that the underlying chemistry is nonlinear. It is interesting that the absolute
values of R in heavily polluted periods were lower than those during less polluted periods. This can be tied,
in part, to the nonlinearities in both the activity coefficients and to the overall chemistry becoming increas-
ingly nonlinear at high pollutant loadings. As seen in Figures 2 and 3, pH and NH4

+/NH3 have a more linear
relationship during less polluted periods (blue circles) while at higher concentrations the relationship is
more nonlinear (red circles).

We suspect that such differences are caused by the poor or rich NH4
+ con-

ditions in clean and polluted periods, and we use the concept of “excess
[NH4

+]” to explore the relationship. Here excess [NH4
+] is defined as

the amount of ammonium in excess of that required for [NH4
+]/[SO4

2−]
= 1.5 and is calculated as [NH4

+] − 1.5 × [SO4
2−] in molar concentration

(Huang et al., 2011). During less polluted periods (pH 2–4), the excess
[NH4

+] was less than 0, indicating a poor NH4
+ condition. The secondary

nitrate increased along with NH4
+ (Figure 2c), leading to pH increases.

During heavily polluted periods, NH4
+ is in moderate (0 < excess

Table 1
Pearson's R BetweenHourly Serial pH and Source Contribution, TWI (μg/m3)

Coal Dust Vehicle SN SS TWI

Heavily polluted 0.21 0.12 −0.08 −0.05 −0.05 −0.02
Less polluted 0.28 0.26 −0.13 0.40 −0.23 0.11

SN = secondary nitrate, SS = secondary sulfate.

Figure 3. Relationship between NH3 (g) and aerosol pH at different source contribution levels. pH versus NH3 (g) and
(a) dust, (b) secondary sulfate, and (c) secondary nitrate contributions.
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[NH4
+] < [NO3

−]) or rich condition (excess [NH4
+] > [NO3

−]; Figure S4a). This leads to a low correlation
between pH and secondary nitrate (R = 0.05). It was also found that the correlations of all sources in the
heavily polluted regime were lower than the correlations in less polluted conditions (Table 1). Lower
correlations at higher loadings may suggest that the nonlinearities in the chemistry are magnified. During
high‐pollution periods, the nonlinear relationship should be increasing due to the nonlinear chemistry.
During high‐pollution periods, the secondary aerosol was higher than those in the less polluted period. To
better explore the role of NH4

+ and NH3 (g) in the neutralization of aerosol acidity, the time period was
further divided into three sections: aerosol pH ≤ 4 (Section I), 4–7 (Section II), and >7 (Section III;
Figure 4). Section I typically occurs during NH4

+
‐poor conditions (excess [NH4

+] < 0) and when
concentrations of nonvolatile cations such as K+, Ca2+, Na+, and Mg2+ were lower. The lack of NH4

+ and
nonvolatile cations to fully neutralize anions leads to high aerosol acidity. In Sections II and III, sufficient
NH4

+ and relatively high nonvolatile cation concentrations were responsible for relatively higher aerosol
pH. Further, we also performed regression between pH and source contributions (SPSS 11.2, backward
regression) for heavily and less polluted periods, as follows:

1. for heavily polluted periods:

pH ¼ 4:72þ 0:04coalþ 0:04dust−0:01SN−0:01SS R ¼ 0:35ð Þ (7)

2. for less polluted periods:

Figure 4. Time series of pH, water content, excess [NH4
+], and TWI. Section I, pH ≤ 4; Section II, 4 < pH ≤ 7; Section III,

pH > 7. TWI = total water soluble ions (TWI < 30 μg/m3: less polluted time period, TWI > 30 μg/m3: heavily polluted time
period).
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pH ¼ 3:69þ 0:05coalþ 0:09dust−0:06vehicle
þ 0:11SN−0:10SS R ¼ 0:57ð Þ (8)

where SN is the secondary nitrate and SS is the secondary sulfate. In the
heavily polluted period, the vehicle factor was removed by backward
regression due to statistical insignificance (p > 0.05), which might be
because vehicle contributions are relatively lower (e.g., a smaller frac-
tion) in heavily polluted periods (Figure 2f). Overall, the results from
backward regression (detailed information in Table S2) agreed with
those of Pearson's R (Table 1): coal and dust are weakly positively corre-
lated with pH while vehicles and secondary sulfate are weakly negatively
correlated. The correlation of secondary nitrate with pH is reversed for
heavily and less polluted periods. Lower correlations in the more highly
polluted periods indicate that the nonlinearities increase. Additionally,
the relationships between the activity coefficients of different ions in
the aqueous phase as a function of aerosol pH and NH4

+ are shown in
Figure S8 for RH > 60%. Nonlinear relationships are found, indicating
the importance of the nonlinear chemistry and thermodynamics.

In order to further investigate the role of NH4
+/NH3 (g) in the neutraliza-

tion of aerosol acidity and aerosol growth, we performed ISORROPIA‐II
simulations to calculate aerosol pH for two hypothetical scenarios: (1)
pHNHx

, where total ammonia (NH3 (g)+NH4
+), was kept the same but

with no other WS‐cation inputs to ISORROPIA) and (2) pHMe+ , where
nonammonium WS‐cation inputs were kept the same but NH3 (g) and
NH4

+were removed. Removing the nonammonium cations (pHMe+)
had little impact on pH (Figure 5), while removing the ammonia/
ammonium typically led to large reductions in pH (Figure 5). In some

cases, the pH increased with the removal of ammonium due to the change in the solubility of metals and
the reduced formation of ammonium nitrate. Likewise, the removal of other cations led to small increases
in pH in some cases due to the underestimation (compared with the original pH) of liquid water content
(LWC) by the model.

The results suggest that the availability of NH4
+/NH3 (g) is a determining factor in stabilizing pH during

heavily polluted periods, while nonvolatile cations contribute less to decreasing aerosol acidity during most
periods examined. During the intense haze periods examined here, relatively high pH usually occurs
because of the availability of NH4

+/NH3 (g) even at very high sulfate and nitrate levels. During this period,
when total ammonia is low, pH and water content are also low, although such occurrences are rare (e.g.,
right after a period where PM is depleted). It can be seen from Figure 4 that water content increases with
concentrations of sulfate, nitrate, and ammonium which all take up substantial water. The increased water
content can provide a large aerosol surface and volume, which promotes secondary formation, leading to
increased SO4

2− and NO3
− formation along with increased aerosol partitioning of NH4

+ (Behera et al.,
2013; Y. C. Liu et al., 2017).

3.4. SOR and NOR

We explored secondary formation pathways by analyzing pH, SOR and NOR, TWI, LWC, and other
pertinent factors (Figure 6). NOR (average of 0.21) was higher on average than SOR (average of 0.09;
Figure 6), suggesting that there is faster nitrate generation than sulfate in winter (or, more precisely, faster
oxidation of NOx versus SO2), which can also be seen in the concentrations of nitrate and sulfate (Figure 1).
The NOR can be also be influenced by the change of partitioning between the particle and gas‐phase nitrate,
which is affected by temperature and pH (Shi et al., 2019).Weak negative correlations between pH, SOR, and
NOR were observed. The correlation of pH and SOR (R = −0.27) suggests that a higher SOR lowered pH, as
expected. The correlation of pH and NOR (R = −0.03) suggests that there is little impact of pH on nitrogen
oxidation. Typically NOR was higher than SOR, but occasionally SOR was higher than NOR (e.g., episode A
in Figure 6). Episodes with higher sulfate formation rates than nitrate formation rates were associated with

Figure 5. Relationship between pHNHX, pHMe+, and base pH (pH calcu-
lated by ISORROPIA‐II using the observed species concentrations).
pHNHx: NH3

+ (g) +NH4
+ were kept the same as the observed values (the

same as for base pH), but other WS cations were set to zero for ISORROPIA‐
II; pHMe+ : otherWS cations were kept the same as the observed values (the
same as for base pH), but NH3 (g) and NH4

+ were set to zero for
ISORROPIA‐II.
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high acidity (pH less than 3), lower pollution (TWI less than 30 μg/m3),
and lower water content (less than 5 μg/m3) in winter (from Figures 6
and S9). Under such situations, ammonia will neutralize acidic sulfate
to form (NH4)2SO4, and the remaining ammonia will react with gaseous
nitric acid to form NH4NO3 (Huang et al., 2011). During the less polluted
period, average concentrations of SO4

2− (8.9 μg/m3 in episode A) were
higher than those of NO3

− (6.2 μg/m3 in episode A), while over the entire
period, average concentrations of SO4

2− (11 μg/m3) were lower than those
of NO3

− (13 μg/m3). Our previous work also showed that when sulfate
was dominant, pH could be low (<4; Shi et al., 2017).

We also tested the relationships between SOR and pH, LWC, and TWI
under different SOR conditions. As shown in Table S3, during high SOR
(H‐SOR; SOR > 0.10) levels, the values of Pearson's R for pH versus
SOR, LWC versus SOR, and TWI versus SOR were negative (−0.31,
−0.17, and −0.25), while during low SOR (L‐SOR; SOR < 0.05) levels,
the values were all positive (0.27, 0.08, and 0.34). The negative correlation
(R = −0.31) of pH versus SOR in H‐SOR is easily explained: increased
sulfate will make aerosols more acidic. The positive correlation (R =

0.27) of pH versus SOR in L‐SOR might be due to the influence of cation‐related sources (coal and dust). In
Table S3, coal and dust contribute more (18.8% and 16.3%) during L‐SOR than during M‐ (moderate) and H‐

SOR (high) conditions. The negative correlation (R = −0.17) of LWC versus SOR in H‐SOR might be due to
faster sulfate generation during daytime, so LWC might be at a lower level when SOR is high. Another rea-
son might be that the LWC is a nonlinear function of the particle components, so LWC should not be
expected to have a purely linear relationship with SOR. For LWC versus SOR in L‐SOR, a weak correlation
was obtained (R = 0.07). For TWI versus SOR, the positive correlation (R = 0.31) during L‐SOR suggests fas-
ter sulfate generation along with the TWI increasing for relatively less polluted conditions (mean TWI = 23.1
μg/m3 at L‐SOR), while the negative correlation (R = −0.25) during H‐SOR suggests more pollution (mean
TWI = 50.9 μg/m3 at H‐SOR) and slower sulfate generation occurred. Similar statistical analyses were also
performed for different NOR levels, and the results were in agreement with those for SOR (Table S3).

4. Conclusion

In this work, hourly concentrations of WS ions in PM2.5, along with gaseous pollutants, were observed in
Tianjin, China. Sources were estimated with a receptor model, and aerosol pH was estimated by a thermo-
dynamics model. The estimated aerosol pH ranged from−0.3 to 7.7, with an average value of 4.9 ± 0.8 (mean
± SD). During less polluted time periods (TWI < 30 μg/m3), aerosol pH variedmore (from−0.3 to 7.0 with an
average of 4.7 ± 0.9) and increased along with the concentration of NH4

+ or NH3 (g). During heavily polluted
time periods, aerosol pH remained constant at around 5 as measured NH4

+ (or NH3 (g)) concentrations
increased and became much less responsive to ammonia and ammonium levels. We investigated the rela-
tionships among aerosol pH, ammonia, and secondary aerosol formation and found that NH4

+/NH3 (g)
plays a determining role in stabilizing pH, while nonvolatile cations contribute less to decreasing aerosol
acidity during most of the periods examined. Additionally, after exploring the variability of NOR and
SOR, we found that nitrate is produced faster than sulfate in winter, but SOR was much higher than NOR
under conditions with high acidity, low pollution, and low water content. The findings of this work show
the role of pH on the formation of secondary aerosols under different levels of pollution. Since pH is hard
to measure directly, the discussion of pH in this work is based on modeled values. Development of methods
and technologies for direct pH measurement are desired for future work.
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